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FOREWORD

This work was performed in the Warfare Analysis Department of

the Naval Weapons Laboratory at the request of the Naval Ship Systems

Command (PMS-393), reference 1. It concerns an evaluation of a method

of passive submarine ranging developed by Dr. D. C.Bossard of

Daniel Wagner Associates, reference 2, and some follow-on investigations

related to the material in the reference,

The authors had excellent support from R. T. Bevan of the Naval

Weapons Laboratory who generated the FORTRAN programs.

This report has been reviewed by R. A. Hodnett, Cdr. USN.

Released by:

R, I. Rossbacher, Head
Warfare Analysis Department
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ABSTRACT

In a new sonar bearings-only solution method, Dr. D. C. Bossard

of Daniel Wagner Associates acbieved quite spectacular reduction in

range errors on a zigging target, one-sixth those of the usual

(unweighted) CHURN method. His method yields time-corrected range

(value at time when expected error is least) and weights observations

according to assumed zig statistics. Bossard also advocates extrapo-

lating favorably-chosen time-corrected ranges to obtain present

range.

We find that the CHURN, with weights equivalent to Bossard's,

achieves equally small time-corrected range errors, and errors at

solution time one-third those of the usual CHURN . Random bearing

noise, however, seriously degrades solutions using Bossard weights,

even without zigs, in which case the unweighted CHURN is optimum.

For combinations of zigs and bearing noise, optimum combined weighting

functions exist.

Unsuccessful attempts were made to use data available to the

tracking ship, e.g. autocorrelation of solution residuals, for

selecting optimum weighting. Autocorrelation was also probed for

zig detection clues without success.

Results obtained by extrapolating pairs of time-cctrected

range to present time were about equally as good as from single

solutions using the same data.
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We conclude that Bossard's important contribution is to show

the effectiveness of appropriate statistical weighting.

Further efforcs should deal with on-board methods for optimizing

weights, and the benefits of weigbting for other error sources

(bearing bias, own ship position). The results would be applicable

not only to the CHURN, but also to the newer optimal filter methods.

i! ]
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I. INTRODUCTION

The proposal by Wagner Associates to the Naval Ordnance Systems

Command (ORD-0521B), reference 2, bas i on the work of Dr. D. C. Bossard,

concerns passive bearings-only ranging on maneuveridg targets. An

example is given, using synthetic noise-free data, in which Bossard's

solution method shows range errors at best range time only one-sixth

as large as the corresponding errors of the CHURN method es generally

implemented.

We have verified Bossard's results by duplication. In addition

we have obtained equally good results with the CHURN modified by the

application of statistical weighting equivalent to that used by

Bossard. The conclusion is therefore drawn that the power of Bossard's

method lies, not in his novel analysis using bearing quadruples, but

in weighting observations appropriately for the process (maneuver in

this case) which generates the errors.

In the Bossard raethod a moving window of fixed time span is used.

A four-bearing range equation is derived which includes an explicit

error term. The derivation continues by formally summing all such

equations obtained from suitable sets of bearing quadruples drawn

from the window, weighting each addend in accordance with the

covariance of its error term. Finally, the equation obta.ned by

summing is modified by adjasting the time parameter so that th.se

terms involving LTI (target speed in the line of sight) offset

T
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each other. Thus an equation for the time-corrected range for the

window is obtained.

The error term appearing in Bossard's four-bearing range

equation is essentially a function of E, the time derivative of

the residual E dealt with in the CHURN (E is cross-range miss

distance of observed bearing line from estimated target position).

As discussed more fully later in this report, the zig strategy

assumed in the geometry used here and also by Bossard in reference 2

generates an exponential covariance for E. Weighting appropriate

to this covariance was used by Bossard to obtain his favorable

results, and by us in duplicating his results. Appendix A contains

the computing algorithm used at the Naval Weapons Laboratory for

this purpose.

We have derived the covariance for E which corresponds to the

same zig strategy (see part III). This covariance turns out to be

non-stationary and correlated, therefore much different from the

stationary, uncorrelated statistics usually assumed in applying

CHURN. Use of the appropriate covariance in CHURN makes the time-

corrected range solutions agree rather closely with those of Bossard's

method.

2
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Weighting in accordance with the covariance generated by a

zigging target evidently has some value even for certain quite

different error distributions, as for example, from the sinuous

target motion also tested. When the source of errors includes

uncorrelated bearing noise, however, solutions are badly degraded.

II. WEIGHTED CHURN AND TINE-CORRECTED RANGE

The CHURN method estimates four target parameters

a1 and a3 , east and north components of speed

a2 and a4 , east and north coordinates at t = 0

which are assumed to be constant during the solution data span.

From these four parameters, along with own ship motion, all of the

familiar target parameters such as range are easily derived. The

CHURN solution minimizes the weighted sum of squares of the residual

Ei = (alti + a2)cos Bi - (a3t i + a4)sin B. - x oicos Bi + yoiSin Bi

Of symbols appearing here and in Figure 1,

Ri(a) is range at time ti computed from a, ... a4 and xoi, Yoi

Bi is observed bearing at time ti

Xoi, yoi are own ship coordinates at time ti.

Inspection of Figure I shows that Ei is the miss distance of the

observed bearing line from the computed target position. The set

of equations for all of the Ei (i = 1, 2 ... n) can be represented

a 3
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in matrix form

E. I cosBI cosB I -tlsinB -sinB l X0 1COSB l-yolSinB1

Ei ticosB i cosB -tisinB. -sinija - xoicosBi-yoisinB i

E ncosBn cosBn -tnsinBn -sinBnlU XonCOSBn-YoninBn_

and, with obvious substitutions, in the more compact matrix notation

E = Aa - d

For minimum variance-covariance of a, two conditions need to

be met:

E TWE = minimum over a

W = constant x CE

where CE is the covariance of E. Equations expressing the first

condition are obtained by setting

(ETWE) = 0 i = 1, 2, 3, 4aai

then substituting for E, and carrying out the differentiation.

The resulting four normal equations can be written

a= g

where ATwA and g ATwd

If the residuals E are stationary and uncorrelated, as has

usually been assumed in previous applications of the CHURN, then

4
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the CE appearing in the second condition above is

E

from which

W constant x ( 2 i) I

merely the identity matrix. We refer to the CHURN thus used as the

unweighted CHURN. Other assumptions about the statistics of E,

leading to a CE which is a full matrix, are discussed in Section III.

Time-Corrected Range

For any CHURN solution, there is a time, t*, when the sum of

variances of target coordinates is minimum (nearly equivalent to

saying the expected range error is minimum):

a) 2 +2
[(6a2 + t 6 a2+ a 4 + t ba 3 ) ] = minimum over t

in which error quantities are distinguished by a prefixed 6.

Evaluation of this equation is made possible by a general property

of least-square normal equations: if

'a g

represents the normal equations, then the covariance of the vector a

is (aaa) -"

5
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Using this relation to expand the expression to be minimized, we

obtain

t (~-+ 0 3 ) + 2t( 12 + 34 + 22 1+ 44 1 minimum over t

and setting the time derivative equal to zero yields

t 02 -( + 34 ) / (  + 3 1 t*

The corresponding range, the "time-corrected range," is

I

R* = R(a,t) = [(alt* + am-xo*) + (a3t* + a4-y*)
2 1

The asterisk designates values corresponding to t = t*.

Since is available as a by product of the straight-forward

CHUR process, the additional computation needed for time-corrected

range is trivial. The accuracy of this range is considerably better

than for range at solution time. Since the time-corrected range is

older, however, and since the other solution parameters are not

improved, its usefulness is controversial.

6
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III. COVARIANCE OF E

As previously stated, the Bossard method makes the assumption

that the time derivative E of the residual E is exponentially auto-

correlated. According to the target motion used by Bossard in

reference 2, zig times are to be randomly drawn from a Poisson

distribution such that the probability of no zig within time interval

t i to tj is
-Iti-ti I/tm

e (3-1)

where tm is the mean time between zigs. The new course is to be

randomly selected from a rectangular distribution extending t 6CT max

degrees about a mean course. With these conditions, Appendix B shows

that the target course deviation has a covariance matrix

E(ACT 6 CTT)ij 2 i -2 e (degrees) 2  (3-2)

2 1 2
where C= ( 6CT max) . If the bearing rate is small, E is

nearly proportional to 6 CT . Thus the covariance matrix for E should

have the same form:

. .. -1t i - tjl/tm
C - (EE T) Coo e (3-3)

In order to use equivalent weights in the CfURN, which minimizes

T 'T .
E WE rather than E WE, the corresponding covariance of E is needed.

7
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This has been derived as outlined here (given in more detail in

Appendix C):

Cij f (EiEj) = E (Eo + E dt)(E 0  I (34)
0

[E- + E0 (Ei +Ej - 2Eo) ] +LItfjt I(t)(t')] dt dt'

- -C00 + Cio + C°j + ri e dt dt' (3-5)

After integration one obtains as final result

E E E E 2 2 Iti - tj /t m
Cij = -Coo + Cio + C o + t -

- [t i l l t m  - It i /t m ]+ e + e - + (Itil + It I - - tj[)/t m  (3-6)

The functions Co(ti), CEj(tj) , and the conscant Coo which result

from integration are completely arbitrary as far as the original

specification of E is concerned, but must be selected so that CE

retains the general properties of covariance/autocorrelation matrices:

CE should be positive definite as well as symmetric. Therefore CiE

and Co should be identical functions of t. and tj, respectively.

For simplicity, these restraints were met by arbitrarily setting

E=E = 2

8
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Again for simplicity, the factor 2 2 was taken as unity, since

for weighting purposes a constant factor on the covariance has no

effect. The result is the expression used 'n many of the tests:

-Iti-t j /tm  -Iti l/t

CE Simple -e + e

-Itj 1/tm
+ e + (ti + Itjil -iti-tj)/tm (3-7)

The origin of time was taken at the middle of the data window.

Seeking a more logical way of selecting the arbitrary functions
10 Co and constant CEo, we have derived a covariance Cij of

deviations from the mean E over any selected time interval ta - 1 to

ta + " . The derivation (given in full in Appendix D) starts with

= (1/2T) fta E i dti = 0 (3-8)

It follows that

e(EJ ) (1/2T) j (EiEj)dti = 0 (3-9)
ta -

ta+ T

0 = (1/2)f Cij dti  (3-10)
fta-T

After substituting from equation (3 - 16) into (3-10) and integrating,
E E E

it is possible to solve for Cio Co and Coo'

9
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The complete covariance expression is then

It ii /t m,ii -j= 2 j{e m~

(tmI-2) e TItm [e(ti-ta)/tm + e-(ti-t)/tm]+ (tita)2 2tmT

-(tm/27') e I atm + e. +ta)/tmj+ (tj-ta) 2 /2tm'r

+ (tm/i + l3tm+ (t(-/2T 1 1- eI l

Some computer runs were made with this covariance formula, using for ta

the center of the window, and for r one-half the window length,

There is some logic in the notion of placing ta at the end of the

data window instead of at the center. This should have the effect of

weighting the more recent observations more heavily, possibly yielding

more up to date solutions. This idea has not yet been tried.

We were somewhat puzzled to find that certain widely-differing

covariance matrices yielded near identical range results, while in

other cases a diminutive change to the assumed covariance matrix

significantly influenced the results. The former situation is illus-

trated by Cj Simple and Zij for which equations are given above,

(3-7) and (3-11). Numerical elements of the covariance matrices

discussed here and of the weighting matrices which are their inverses

I0
10
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are given in Appendix E. No resemblance is apparent either between

covariance matrices or weighting matrices, yet the results obtained

were nearly identical. The other situation is illustrated by

(Cdj Simple + .0021). Although the diagonal elements of Cj Simple

are thus increased by no more than 0.2%, the corresponding inverse matrix

is thereby noticeably changed, and range results were appreciably

influenced.

Experiment has also shown that the combination (C.j + .0021)L E
produced ranges nearly identical to those of (C.j Simple + .0021),

WNS values differing less than 5 yards in cases tested.

IV. TEST CASES ' -

The tests here reported used mainly the geometry shown in

Figure 2, this being the same as used by Bossard in reference 2.

According to the reference, the target path in this geometry was

constructed by the algorithm described in section !II, using tm = 15

minutes as the mean time betweei, zigs, and selecting each new course

from a rectangular distributLon lying within ±40 ° of the mean course,

1420. Own ship retained an unchanged schedule of zigs throughout all

tests, and both ships maintained speed constant at approximately

10 knots.

Solutions were computed for a moving data span or "window"

usually 20 minutes in length, which included 11 bearing samples taken

11
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at odd-numbered minutes. Thus the first solution came at 21 minutes,

followed by new solutions at 2-minute intervals.

In order to test certain hypotheses, variations in the above

conditions and solution methods were introduced. These included the

straight target path and sinuous target path shown in Figure 3, bearings

with noise, and a longer data window.

V. DISCUSSION OF RESULTS

1. Churn vs. Quadruples

The initial question attacked was why the quadruple method

proposed in reference 2 yielded better ranges than the CHURN for the

synthetic case used for demonstration (zigging target, noise-free

bearings). Several ideas were tried before equal performance was

achieved.

In the quadruple method, the single variable range is optimized.

In CHURN, on the other hand, the "time-corrected range" corresponds

to the minimum sum of variances of the two variables x and y. It

seemed possible that if by rotation of coordinates the range vector

was made nearly parallel to the y-axis, and if then the variance of y

alone was minimized, that a better range value would be obtained. No

significant gain was realized, however, as can be seen by comparing

columns 3 and 4, first row, of Table 1.

12
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The next experiment was intended to try in the CHURN a weighting

matrix equivalent to that used in the quadruple method. Through an

initial misunderstanding of this weighting, weights corresponding to

- (ti-tj)/tm

were applied to the CHUI.PY. Table 1 exhibits the poor results thus

obtained (column 5).

Another experiment used the same weights divided by the range.

It is well known that CHURN produces biased estimates because the

residual E is scaled by the range. In a synthetic problem in which

true ranges are known a priori, some of the bias can be removed by

dividing out the range. Column 6 of Table 1 shows the improvement to

be neglibible.

Fur.ther examination of Bossard's quadruple formulation revealed

that the assumed exponential (Poisson) distribution applies essentially

to E, rather than to E,, The derivations of section III and Appendices B,

C yielded the corresponding covariance matrix needed to apply this

assumption in the CHURN. As shown in the first row, last column of

Table 1, the range errors thus obtained with the CHURN are even slightly

smaller than those of the quadruple method. It was concluded that the

merit observed in the quadruple method arises frcrm the weighting, rather

than from geometrical properties. Subsequent tests, using the CHURN,

were directed toward learning the effect of this weighting and its

variations under differing conditions.

13
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Although achieving a substantial advantage for a maneuvering

target in the absence of bearing meansurement noise, the type of

*weighting used in the quadruple method performed poorly when noise

was present. In order to separate the effect of bearing noise from

the effect of maneuver, tests were performed on a straight-running

target with unweighted CHURN and with weighted CHURN. The second

row in Table 1 shows that the unweighted CHURN performs better for

this case.

14
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2. Variation of Covariance Parameters

We desired to --vestigate whether adjusting the parameters

of the assumed covariance upon which weighting is based would bring

about any improvement, especially in the presence of bearing noise.

The second line in Table 1 indicates that the Bossard weighting

performs poorly when uncurrelated bearing noise is present. It

seemed reasonable that other values of tm might work at least as

well, since only three zigs at most occurred within any window, and

such a zig pattern could arise from a wide range of tm values with

almost equal probabilities. In addition, the derivation process

(Appendix C) contributes to the covariance of E an undetermined

constant Coo and undetermined functions Cio , Cjo. A series of tests

was performed to compare results with variations in these parameters,

and the range errors are given in Table 2. The upper half of the table
E E E

shows results obtained by changing (C.o + C - Eo), e.g. adding a

uniform constant to each element in the covariance matrix. The

effect on range errors is insignificant, with or without noise.

The lower part of Table 2 indicates the effect of varying tm.

Performance in the no-noise case deteriorates, but in the more realistic

case of bearings with noise, very substantial improvement can be

obtained by reducing tm to 0.2 - 0.1. The logic underlying this

result is only partly clear. The shorter mean time to zig implies less

correlation between observations, and thus corresponds better to the

uncorrelated bearing noise portion of the residual E.

16
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TABLE 2
Ej CE  EVARIATION OF tm AND E E C

RMS Range Error
No Noise Noise N 0.i

E E E At At
Cio + oj coo tm(min) Solution Time- Solution Time-

Time Corrected Time Corrected

0.2 15.0 1914 699 6021 6715
1.0 1915 700 6013 6715
5.0 1921 709 6040 6716

1.0 28.6 2003 795
" 15.0 1915 700 6013 6715
" 7.0 1995 725

2.18 4140 3471

1.66 3786 2780
1.24 3614 2288
0.87 4595 2564 3691 2104
0.87 4263 1963 (10)
0.67 3849 2084

" 0.43 4612 2348 (10)

Target maneuver: zigs
E J/itjf 1ttm I/tm -Itj.I/t m 3 I~~$t

CE = -e + e + em + (Itil + It I - ItitjD/t m

E E E+ Cio + Coj - C00

(10) RMS of 10 noise samples. Other entries PMS of 3 noise samples.

17
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3. Covariance for Combined Error Sources

Derivation of the covariance as for the results of Table 2

accounts only for residuals arising from zigs, whereas the covariance

commonly used in the CHURN (proportional to an identity matrix)

assumes residuals arising only from Gaussian bearing measurement

noise. When both sources contribute to the residuals, it is reasonable

to add their covariance contributions. The sum, expressed in a form

to make the units of both contributions consistent, is

Combined covariance E tm Simple + E2
Em EB

where CE Simple is defined by equation (3.7), 2 is the variance of

E caused by bearing measurement noise, and I is the identity matrix

of the same order as CE . Rearranging,

(Combined covariance)/( a 2 tm2) = CE Simple + oE'( *2tm2 ) I

from which we define the equivalent terms

CE Combined = CE Simple + 0I

We have performed a number of CHURN tests to determine whether the

CECombined leads to significant improvement. Since thn factors upon

which a depends would not be known with precision in practical

situations, we also wished to determine whether its value is critical.

18
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Figures 4, 5, 6 show the effects of variation in o on range

errors for three types of target motion. All cases include uncorrelated

bearing measurement noise. The RMS range errors have been plotted

against Otm2 in order to normalize for the several values of tm

included. Figure 4 verifies an expected result, that for a straight-

running target the unmodified identity weighting ( o = o) is

optimum.

Figure 5 applies to the zigging target used in reference (2).

This graph confirms that a proper blend of CE Simple and I is

significantly better than either alone for this target in the presence

of bearing noise, except when tm is very small. It also indicates

that ce may vary by a factor of three either way from the optimum

without serious degradation of the range solution.

Figure 6, for a sinuous target motion and bearing noise, also

shows advantage for the CE Combined, even though the statistical

distribution of the residual E generated by this maneuver is entirely

different than that generated by a zigging target. The factor a is

again noncritical.

Returning to consider Figure 4 again along with Table 2, it

appears that as much is gained by reducing tm as by using CE Combined.

Figure 7, however, supports the use in the absence of noise of a value

near the theoretical one, tm 15 minutes. The conclusion to be drawn
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is, that the theoretically appropriate values of tm and a work at

least as well as any, but when the effect of random noise is large,

certain other values also work as well. A more specific characteriza-

tion at this stage seems hazardous.

4. Tactical Selection of Covariance Parameters

It is clear from Figures 4 through 7 that for best results

from the CHURN, the assumed covariance parameters tm and d should

be adjusted to suit the noise and target maneuver. Since the a priori

information on target maneuver available to the tracking ship would I
be limited, a method of adjustment based on preliminary data analysis

is desirable. We have examined several schemes for selecting the

Parameters, with doubtful or negzative results. One method consisted

of comparing the variance of bearing residuals based on the same data

but with different assumed functions for the covariance of E. It was

hoped that small residuals would correlate closely with small range

errors. In Figure 8, the variance of residuals is plotted against

RMS error of time-corrected range, and in Figure 9 against RMS error

of solution-time range. Points plotted in these figures are coded to

disti'iguish three combinations of zig and/or bearing noise, and for

each combination a variety of covariance functions is represented.

While some correlation is noticeable between bearing residuals and

ranga errors, the relation is not as consistent as one desires as

a basis for choice.
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5. Zig Detection by Autocorrelation of Bearing Residuals

Unfavorable results were obtained from our attempts to detect

zigs by means of the autocorrelation of bearing residuals. The

principle involved is that the shape of the autocorrelation curve

estimated from the sample,

R(,r)sample [mean 6B(t) 6B(t + 1T)]/[mean 6B(t) 6B(t)]

should be different for zigging and nonzigging targets. If one assumes

that bearing residuals should have the same covariance (except for

a scale factor) as the cross-range residual E, then for a zigging

target with bearing noise the expected R(T)sample would be the

theoretical curve drawn in Figure 10 on the left side. This curve

was computed from the covariance

ZE + .002 I

For a non-maneuvering target with noise, the expected value of

R(T)sample would be unity at the origin and zero every where else.

Figure 10 exhibits the empirical R(T)sample points obtained

for two sets of three runs. Both sets are identical in conditions

except that one has a zigging target while the other has a straight-

running target. The "random" sequence of bearing noise values is the

same for each set. It does not appear that any clearcut characteristic

distinguishes the zig cases from the straight path cases. Furthermore,
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each curve is an average over 49 minutes of data, which is generally

too long to wait for the basis of a shipboard decision. lith a lower

noise level a better result would possibly be obtained, but the level

assumed is not unreasonable. The value IB = 0.10 applies to generated

bearings two minutes apart, corresponding to a mean of sixty or so raw

bearings.

6. Time-Corrected Solutions vs. Longer Windows

Reference (2) proposes extrapolation from a sequence of time-

corrected ranges to obtain range at present (or desired) time. It

gives examples of time-correction applied to CHURN to support the

assertion that the line joining two time-corrected ranges from suitably

chosen windows can be extended to estimate present range at least as

well as a single solution covering the entire interval. The advantage

is said to be greater if the tracking ship executes a lag-lead-lag

series of course legs.

Our tests of this method employed different conditions than

thos L' : rance (2). The most significant differences are that we

used the zigging target of Figure 2 (instead of a straight path), a

different noise level, and weights corresponding to

CECombined = cESimple + .002 1

in the CHURN (instead of the unweighted CHURN). This covariance has,

in our other tests, yielded the best overall range result's for this
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geometry and noise level (0B 0.10). Time-corrected ranges were

obtained for every 20-minute window possible in the run, and solution

time ranges for every 28-minute run. The process was repeated for two

additional runs with different noise samples. In Figure 11 the solid

lines represent errors of time-corrected range plotted against the

"best range time" at which the time-corrected range applies; certain

points have been labeled with the time of solution.

As predicted by reference (2), the best range time tends to fall

near the beginning of a window which spans a lag-lead sequence of

tracking ship legs (points labeled 21 or 39), and near thp end of a

window which spans a lead-lag sequence (29 or 49). Thus the pairs

21 and 29 or 39 and 49 provide favorably long baselines for extrapola-

tion. Circled points terminating the short-dashed lines show the

range errors resulting from extrapolation to present time, at 29 or 49

minutes.

Figure 11 also shows the range errors at solution time using

28-minute windows (square points). The 28-minute windows ending at

29 or 49 minutes encompass nearly the same data as the pairs of

20-minute windows used in extrapolation. At 29 and 49 minutes,

therefore, a direct comparison can be made between the two methods:

extrapolation of time-corrected range using pairs of short windows,

versus solution time range using longer windows. In this case the

verdict is nearly a tie, but it is evident that the scatter caused

by bearing noise would mask the small advantage which might exist

for either method.
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VI. CONCLUSIONS

We find that the major contribution of Dr. Bossard in reference (2)

to passive ThA technology is to demonstrate the effectiveness of

appropriate statistical weighting. Our own tests have shown that the

CHURN, with equivalent weighting, performs as well as the quadruple

method presented in reference (2). The importance of weighting would

apply to any type of solution using redundant data.

The weighting used in reference (2) was derived to fit a particular

target maneuver strategy, assuming no bearing noise, When random

bearing noise is present, however, solutions with this weighting are

poor even without zigs; indeed, the unweighted version of CHURN is

then optimum. A combined weighting has been found to be best when

both noise and maneuver are present. Although the combining proportions

are not critical, further work is needed to develop a method for

selecting the best weighting on the basis of information available

to the tracking ship.

Compared to the unweighted CHURN, the CIUKN with weighting derived

for a zigging ta-et has been found superior for a sinuous target path,

although the residuals generated by sinuous motion have an entirely

'I
different statistical distribution. This result leads us to hope

that one type of weighting can be used for a variety of target

strategies.

Our attempts to distinguish target zigging from straight path
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by examining bearing error autocorrelation were unsuccessful. This

idea would probably worK at lower levels of random bearing noise.

In our tests of time-corrected ranges extrapolated to estimate

present range, no ad antage was observed over solution time range.

Since the number of cases tried was only three, the z,-?tter due to

noise masked whatever small difference might exist. Time-corrected

rarges prebly bac other applications, since they indeed have

smaller variance than solution-time ranges. For instance, information

that the target has been approaching since best range time may exist

in a form not available to the computer; even if solution time range

is wild, the time-corrected range would provide a fairly reliable

upper limit.

The statistics of maneuver introduced here in the CHURN can also

be introduced in the optimal (Kalman) filter technique now coming into

favor. Reference 3 describes a Kalman filter and trials on real data.

The formulation given permits statistical variations of target velocity

components, i.e. target maneuver, and in some of the trials the filter

did assume non-zero statistics for velocity changes. All of the cases

tried, however, had a non-maneuvering target. The suboptimal results

correspond to our own results with the CHURN (reported herein), when

using weighting appropriate to a zigging target on a straight-running

target.
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VII. AREAS FOR FUTURE WORK

Taking full advantage of weighting requires a method for

selecting a near-optimum weighting function, given such information

as a tracking ship can possess in the tactical environment. Our few

unsuccessful attempts were aimed at extracting a weight selection

criterion from bearing data alone. While we believe this not to be

hopeless, further studies should consider the use of bearings together

with other sensor data in a combined solution method. With the

maneuver detection problem thus greatly reduced, appropriate bearing

statistics would be available to enhance the combined solution.

In addition to target zigs, other sources of correlated errors

exist for which appropriate weighting could improve solutions. Examples

are own ship position keeping, and bearing measurement bias. Enough

is known about these particular sources so that error modeling would

not be difficult. Investigation is needed to determine how large the

potential improvement would be, and how to introduce the statistics

into a solution.

Inasmuch as the Kalman filter solution method appears soon to

become the standard, further innovations should either be implemented

in this framework or tested in competition to it with respect to

accuracy and computing economy.
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APPENDIX A

Quadruple-Bearing Range Solution

The following is a computing algorithm for obtaining range

estimates from sets of four observed bearings, and for averaging with

appropriate weights the estimates spanning a data window. The result

is a range solution at best range time, i.e. a time-corrected range.

While different in form, the equations used here are equivalent to those

presented by D. C. Bossard in reference 2.

In a time interval (window) containing LW discrete equally-spaced

observations, the observation times are designated

tb = time at beginning of window

tb- I = tb + At

t i = tb+1 + i lt

Similar subscripts on other parameters refer to corresponding observa-

tion times. Further definitions are

Bi = bearing

xoi, Yoi = own ship coordinates

Sij = sin Bi cos Bj - cos Bi sin Bj

Ci. = cos B. cos B. + sin Bi sin B.

Dij (XoiXoj)cos Bi - (yoi'yoJ)sin Bi

Lij -(xoi-xoj)sin Bi - (yoi-yoj)cos Bi

A-1

CONFIDENTIAL



CONFIDENTIAL

Using the above definitions compute the following for 1 i \' (LW-2):

Di = Sii I - Cil, b Ci,b+l Sb+l,b

ii = [Lbi-i Si,i-I - (Dii-i - Db+l,b Ci,b+1)Ci-l,b ]/Di

= (ti-I - tb) Si,i-I/Di

Yi = At Ci.l,b Si,b+l/Di

The range estimate for a single set of four bearings, although

not explicitly used in the succeeding computation, is (b cos b)

in the equation

( 0b co t b)i = i + Pi(STI)b + ri(STI)b+l

Eb

+ E b+l

+ '-Ci-lbCi,b+lCbr+,b; Ci-l,bCi,b-l; Ci,b; -Ci-l,b) E DL
i-

Ei  ,

in which STI is the line of sight component of target speed, and

Lb is the anglc subtended by the cross range residual Eb.

We proceed next with the computation of weight. It is shown in

reference (2) that the in-line range residual is approximately

proportional to

lRbi (-Eb + Eioi ) / D i

A-2
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This, together with the assumption that the covariance of E is

A - ti-tj 1/tm A i-Ji
Cij e P

leads to a covariance for the in-Urice range residU1-a 'A

I i+l I j+lJ li-jI

Ci~ j = (1-P - P +P )/(D Dj)

This is a symmetrical matrix in which

1 %" i~j \' (LWk-2)

Compute the matrix and its inverse. Compute weights using the formula

LW-2 -i/LW-2 LW-2 -1
£ (CR) / 'E (CR)
j=i ij i=l j=l ij

Compute the weighted means

LW -2
= £ wi C

i=l 
i

LW-2

i=l

),= 2; i~

* A-3
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Interpolate for B = 3(t. Then compute

tt 7t + 7 cos B-Bl) /cos (B-Bb)

Laterpolzite for Bk = ~t' and finally compute

R* (b+,,E- Lb+lt*

+ ( d - Lb-d. cos (B - Bb.1 ) Icos (B-Bb)]J/cos (B*-Bb+l)

which is the time-corrected range for the window.

A-4
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APPENDIX B

Justification of Exponential Correlation for

Consider a target vessel which is traveling at constant speed,

making good a mean course while performing zigs as evasive maneuvers.

The zig strategy is assumed to be as follows: the time for each zig

is selected so that the probability of no zig in the time interval

t i to tj is
-Iti-tJ /tn

P(no zig between ti and tj) = e (i)

and the deviation from mean course resulting from each zig is drawn

randomly from a rectangular distribution of variance 2T  CT max)2

Then the covariance of target course deviation 6CT is

CT

Cij = 6[6CT(ti) 6CT(tj)] (2)

= a2T P(no zig between ti and tj)

+ (zero)P(any zig between ti and t ) (3)

2 -Iti-tj I/tm (
CT (4)

The constant tm turns out to be the mean time between zigs.

As a linearized approximation, the cross-range error residual E

resulting from such target maneuvers may be written

Ej ti 6CTdt + E (5)E f = TI0

0
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where ST1 is the component of target speed parallel to the bearing

line. Then the time derivative of E is

= STI(ti) 6 T(ti) (6)

and the covariance of E is

C.j = t [ij] (7)

= i[sTI(t i ) sTT(t-i) 'CT(ti) 1(Ctj)] (8)

If the approximation ST = constant is accepted, (8) becomes

C E = S22 C T
ij TI CCT(tP) 6CT(tj)] STI 0ij (9)

Substituting from (4),

showing that the covariance of E arising from target zigs of the type

described is approximately an exponential function of tite difference.

B-2
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APPEWDIX C

Covariance of E Derived from Covariance of E

Given that the covariance of the time derivative E of the error

residual E is

3.3 Eij= U. e "(1)

then the covariance of the residual itself is

C~j (EiEj) £[(Eo + f idt)(E, + dt) (2)

£[EOZ +i0j C[E()E(t')J dtd+' (3)
of I 0 2 + Eo ( E i + gj - 2Eo) ] + fi jf[ c tdt ' (3

CE + E - E + a. ~f t I t-t 1/tm dt d' (4)
i C~+oj C 0 U.ftifi~t

Integration will be performed piecewise over regions within which

the sign of the exponent can be insured. The double integral becomes,

if ti ;/tj O/0

ot J[fot' I (t-t')/tm dt+ -(t-t')/tm ]t d

tl -t V tm -( I-t' /dt e -t +2 d t'

2 (ti-tj)/tm ti/tm tj/tm

4tm (-e + e + e -1) + 2tmtj (5)

C-I
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if tj >/ ti > 0, syuetry with respect to i and j leads to the

analog of (5)

2 (tj-ti)/tm -tj/t + t
(-e + e - 1) + 2trti  (6)

if 0 >/ tj y/ ti. the integral of (4) becomes

f f e dt +te dt dt'
tj ti

tmf -e + 2 dt'

2 (ti-tj)/tm ti/tm tj/tm
e + e + e - l) - 2ttj (7)

By symmetry, if 0 7/ ti ",/ tj the analog of (7) is

t(-(ty-ti) Itm tiltm tj/tm
+ e + t - I) - 2 tmti (8)

If ti >/ 0 >/ tj, the integral of (4) becomes

f t J "(tt')/tm t '/t'

= fti e +t I dr'

(tj-ti)/t m  ti/t m  -tj/t m

(-e + e + e (9)

C-2
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Again by symmetry, if tj '/ 0 t. we obtain the analog of (9):

2 -(tj -ti)/tm ti/t m  - 1) (10)

Expressions (5) through (10) can all be represented by

-lti-t j I!t m  Iti /4 m  itj It m

-e + e + e -) + rn ) 0  (11)

where tme represents the term following the parenthesis in (5)

through (8), and is zero in cases (9) and (10). Empirically one

may verify that

8 = Itil + It I - Iti-tjI (12)

fits the requirements. Substituting (11) and (12) into (4),

CE = C E * CE CE
Cij o + Coj - 0 0

+ 22 2 -e It i - t j I / t in  eItil/tm + I-t I/tin

+ a. -e +e + -e

+ (til + itjI - Iti-tjI)/t M  (13)

C -3
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APPENDIX D

Covariance of E for E 0 Over Selected Period

In a previous derivation the expression

C E = Ci° + C° E ooC

13 10 03 00

2~t 2 It i - t i l t m  - Iti!It m  -Itj lIt "

+ a.2 2 _e + e + eE

+ (Itil + it i - iti-,:j )/h ] (

was obtained for the covariance of E, corresponding to a given

covariance for the time derivative of E:

CE -Iti-tjt (2)

Cio stands for a function of t i only, Coj a function of tj only, and

C0 0 a constant. These arbitrary quantities are not further restricted

by equation (2), nor by the general requirements for autocovariance

functions except that CJj must be positive definite. In order to get

explicit expressions for the arbitrary quantities, another requirement

which seems reasonable is here imposed: that the mean value of E

over a selected interval ta - T to t a + T is zero,

=- a Eidt i : 0 (3)

a
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The covariance which meets this requirement will be designated CE.

From (3) it follows that

I ta ' "

= F f (EiEj)dt i  0 (4)

0 'ta+ dtt -rij

a

Before substituting (1) into (5), equation (i) is abbreviated by

replacing with Fi, Fi, and K all of the terms in ti only, terms in

tj only, and constant terms, respectively. Equation (1) becomes

C i 2 t 2 [ e i Iti-tj I/t m + + F + K (6)

which is substituted into 5, dropping constant factors:

0 f [[ti I/tM I-t j  /t m + Fi + Fj + K dti (7)

[ JT [e (i j + (t i- tj)/tM dt ia

=' a

+fta+7r[ *(ti-ti)/tm -(tit)tm] dti

tj

+ Fidtj + 2TrF + 2TK (8)
t a -

0-2
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=[ (tj-tj)It / 2 itm mlt-I

+ tme~ + t2 /2tm + tj~/ 1 a 9

tt +

aa

+ [t me (t +Tt i)/tm ] tt+T -ij + [tTa T

ta~I.

Fjt + tF + 2 7F 2K
taI

a
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By symmetry, (11) may also be writtern with i and j interchanged:

[etm (tita)tm (i-+ /r0= tmfe ej

(ti-ta) 2/tm 2/tm (2

+fa- F jdtj + 2TFi +t 2-rK

Subtracting (11) from (12), noting that fFidti =fFj dti:

O /tm [(ti-ta)/tm +e(ti -ta) / tmn- (tj-ta)/tm e(tj ta)/tm]

-(ti-ta) 2/tm + (t j-ta)2 Itm + 2 T[IFi4F] (13)

Because ti and tj are independent, the terms in ti must sum to zero or

a constant, and those in tj also must sum to zero or to an offsetting

constant. We assume that the constant part, if any, 18 assigned to

K. Then

e- T/itm e (tita)/tm + ef >ita/ (tita) 2/tm + 2T Fi = 0 (14)

Fi (/ 2 )e- T/me(tt)t e (ti-ta)/~l + (t i-ta)/2tj (15)

An analogous expression applies for Fj.

D -4
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* To evaluate K, substitute (15) and its j-analog into (ill:

r-,ftnF ) t~ -t3-ta)/tm (tjta)/tml 2
0 tIe [e + et2) - m -r t

t Ir C+I t (tt )/t + tj 1
+ I - (tm/2 -r-e e

+ (ti-ta) 2/2 .dti + 2 r {(tm/2*T) e [ei + ta)/tj

(t~a /tm~J + 2-rK (16)

a)ita)/tm

'0 *2tm -I I.2I (t2/27 .)e -e~ + ej
t- 1*

3/ t t 2 + t~t /2 la + 2TK(17

(u It)[/6 ttl a It (17
a

0 -2 tm - T /t - (t~/T) e [e'7 -e

+(1/6tmrT)[(t a+I)3- (t -T)j 3] (ta/2tm-r)[(a+. 2
- (ta T) 2 ]

+ (t /2tmT) (ta+T) (ta-.)] + 2I.K (183)

D-5
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~~ 2/tmI

K = t-/r+ TI3tm + (tI2-r2) 1i-e ](19)
If equation (15) and its j-analog and (19) are substituted into (6),

the complete expression for covariance is obtained:

_It tt j l l t mC-E =  # 2  -e - I ti-t j I/t m

"i/tm -e(t' ) / m  -(ia/in

- (tm/2T)e )/tm + ei + (ti-ta)2 ,'2tm- "

"T/ tme (tj-ta) /tm -(tj-t a ) tm]

(tm/2")e m e + e + (tj-ta)2 /2tm1

+ tmit + T/3t m + (t/2" 2 ) 1 - e (20)

If t( is taken as the time origin and the window of length w

coincides with the interval ta-T to ta+T, then (20) simplifies to

-CE 2 _ _- I/ tijl

j t 2  e t i -tj i/tm -

-W/z, [ ti  -t i  tj -tj]
- (tmn/w) e e + e + e + t + (ti 2 + t 2 )/t mw

+ 2tmAy + w/6tm + (2t / 2  El1~ ] (21)

Equation (21) has been used for some of the reported tests.
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~~AxN DIX '

-1  -Glossary of Symbols

al east and north components, respectively, of

tatgec :-cLJcity.

ta2, a4  - east ard -orth comcnents respectively, of

target po'qition with reI-ict to an arbitrary
i~~ ~ fi.zed o g ,

aj

a
a (matrix notation) -

a3

a4

A (matrix notation) - an n-row matrix having rows of the form

ti cos Bi, cos Bi, -ti sin Bi, -sin Bi .

Bi  observed bearing to target at time ti.

C (Apendix A) an abbreviation for several terms, defined as

introduced.

CE, CE, etc. covariance of the superscribed variable.

CE Simple a particular formula for the covariance of E,

derivc.(i in aippend-x C.

0E a particular form;.la fo= the covqriance of E,

derived i- Xip'dv: D.

CT targut -OUTSL
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D (Appendix A) - an abbreviation for several terms, defined

as introduced.

d (matrix notation) - an n-element column vector with elements of

form x0i cos Bi - Yoi sin Boi.

E - the cross range miss distance of the estimated

bearing line. In matrix notation, a column

vector with elements Ei.

g (matrix notation) - the constant term in the matrix representation

of CHURN normal equations.

I (matrix notation) - the identity matrix, having all ones on the

principal diagonal, all zeros elsewhere.
I!

L (Appendix A) an abbreviation for several terms, defined as

introduced.

P (Appendix A) - an abbreviation for several terms, defined as

introduced.

R - range to target.

WR - estimated range at best range time, e.g. time-

corrected range.

R(-r) - autocorrelation function.

R(T)sample - estimate of R(T) based on a particular sample.

STI - component of target speed along bearing line.

S (Appendix A) - an abbreviation for several terms, defined

as introduced.

F-2
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t - time.

tm  - mean time interv-l between zigs.

t* - best range time: time at which the expected

range error of a solution is least.

W (matrix notation) - a weighting matrix, usually the reciprocal

of the assumed covariance of residuals.

xo, Yo - coordinates of tracking ship with respect

to an arbitrary origin.

- a combining factor used when adding covariance

contributions from target zig and from bearing

noise.

C1 , (Appendix A)- an abbreviation for several terms, defined as

introduced.

S- (used as prefix) indicates error quantity.

E - expected value operator.

£ b (Appendix A) - angle subtended by the cross range residual Eb.

(Appendix C) - symbol for an unknown expression, dropped when

the expression is determined.

P - e-21tm.

SE2 , OE2 etc. - variance of the parameter indicated by subscript.

- - time interval.

(matrix notation) - 4 x 4 matrix, coefficient of the vector a in

the CHURN normal equations.
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